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Code Example

1 for(int i = 0; i < 4000; i++){

2 for(int j = 0; j < 4000; j++){
3 sum += arr[i * 4000 + jl;
4 }

5

6

7 // the code block above runs 10z faster than the one below

8
9 for(int i = 0; i < 4000; i++){

10 for(int j = 0; j < 4000; j++){
11 sum += arr[i + 4000 * jl;
12 }

13}
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Computer Storage Hierarchy

Memory Hierarchy

m L1 Cache: 2 «~ 64KB
m L2 Cache: 256KB «~ 2MB

i m L3 Cache: slower than L2,
egisters
faster than main memory
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Traditional HDD (Hard Disk Drive)

Rotational latency

Seck time Transmissicn  time

Average Seek Time: ‘ s
m 4ms for high end serversww
m 9ms for desktop drivers @
m .1ms for SSD



Data Structures

C

omputer Storage Hierarchy

Latency Comparison Numbers ( 2012)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 3,000 mns 3 us

Send 1K bytes over 1 Gbps network 10,000 mns 10 us

Read 4K randomly from SSD* 150,000 mns 150 us

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms
Disk seek 10,000,000 ns 10,000 us 10 ms

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms
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Contiguous Memory

file A file C file E

I—l—\
S N O O 5 I

file B file D

3 free blocks 4 free blocks file E

L1 1 [ [ [ | [ [
(b}
I
| |

hole file B hale file D

(a) Contiguous memory allocation of 5 files
(b) When the file A and C terminates and release the memory
creating hole
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Arrays

Zero-Based Index

1 int primes[] = {1, 3, 5, 7, 11};

3 primes[0] // return 1st prime number
4 primes[1] // return 2nd prime number
5 primes([2] // return 3rd prime number

6 ... // and so on




Data Structures

M

emory, Cache Locality

Arrays: Pros and Cons

Pros:
m fixed length data structures
m offer great memory locality
For large data sets stored in an array, two issues arise:
m Dynamic array resizing.
m Search. O(n) without keeping data sorted.

m Insert. Require rearranging large sorted data set.
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Large Data Set Storage
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Figure: Large Data Set cannot be stored in one contiguous block of
external memory
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Figure: Sequentially break big array into multiple small ones. Linear
search inefficiently.
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B-Tree Solution
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Figure: B-Tree Example
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A B-Tree of order k (children) is an k-ary search tree

m The root node is either a leaf or has at least two children.

m Each node, except for the root and the leaves, has between
k/2 and k children. This is to make sure that tree is making
optimal use of space and is not skewed.

m Each path from the root to a leaf has the same length. In
other words, all leaf are at same level.

m The root, each internal node, and each leaf is typically a disk
block.

m Each internal node has up to (k - 1) key values and up to k
pointers to children, as k is the order of tree (order=maximum
children).

m The records are typically stored in leaves. In some cases, they
are also stored in internal nodes.
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B+Tree Solution
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Leaf nodes are linked to each other and store pointers to data

Figure: B+Tree Example
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B+ Trees are different from B Trees

m B+ trees don't store data pointer in interior nodes, they are
ONLY stored in leaf nodes. This is not optional as in B-Tree.
This means that interior nodes can fit more keys on block of
memory and thus fan out better.

m The leaf nodes of B+ trees are linked, so doing a linear scan of
all keys will requires just one pass through all the leaf nodes.
A B tree, on the other hand, would require a traversal of every
level in the tree. This property can be utilized for efficient
search as well, since data is stored only in leafs.
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B+Tree for Index

d, d, d; d, d; dg d;

Figure: B+Tree Index. (di,da, ..., d7) corresponds to the no of the pages.
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