Data Structures

Data Structures
B-Tree Structure

Jing Ming
YIER M 194%

Spring2021

Data Structures

Outline

B-Tree Structure
m Problem and Solution
m Computer Storage Hierarchy
m Memory, Cache Locality
m B-Tree Index

Data Structures

P

roblem and Solution

Code Example

1 for(int i = 0; i < 4000; i++){

2 for(int j = 0; j < 4000; j++){
3 sum += arr[i * 4000 + jl;
4 }

5

6

7 // the code block above runs 10z faster than the one below

8
9 for(int i = 0; i < 4000; i++){

10 for(int j = 0; j < 4000; j++){
11 sum += arr[i + 4000 * jl;
12 }

13}

Data Structures

‘—B-Tree Structure

Computer Storage Hierarchy

Memory Hierarchy

m L1 Cache: 2 «~ 64KB
m L2 Cache: 256KB «~ 2MB

i m L3 Cache: slower than L2,
egisters
faster than main memory

Direct
Access to CPU
Temporary
|— Storage
Main Memory RAM Areas
Physical RAM
Indirect Access to CPU .

Secondary Starage Device Type

< Permanent
Operating System — Network/ S
Assisted Memory Internet Areas
Management Storage

Input Sources

Scanners/

Keyboard e Cameraf Remote Other
Mic/ Source Source
Video

Data Structures

C

omputer Storage Hierarchy

Traditional HDD (Hard Disk Drive)

Rotational latency

Seck time Transmissicn time

Average Seek Time: ‘ s
m 4ms for high end serversww
m 9ms for desktop drivers @
m .1ms for SSD

Data Structures

C

omputer Storage Hierarchy

Latency Comparison Numbers (2012)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 3,000 mns 3 us

Send 1K bytes over 1 Gbps network 10,000 mns 10 us

Read 4K randomly from SSD* 150,000 mns 150 us

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms
Disk seek 10,000,000 ns 10,000 us 10 ms

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

Data Structures

Memory, Cache Locality

Contiguous Memory

file A file C file E

I—l—\
S N O O 5 I

file B file D

3 free blocks 4 free blocks file E

L1 1 [[[| [[
(b}
I
| |

hole file B hale file D

(a) Contiguous memory allocation of 5 files
(b) When the file A and C terminates and release the memory
creating hole

Data Structures

M

emory, Cache Locality

Arrays

Zero-Based Index

1 int primes[] = {1, 3, 5, 7, 11};

3 primes[0] // return 1st prime number
4 primes[1] // return 2nd prime number
5 primes([2] // return 3rd prime number

6 ... // and so on

Data Structures

M

emory, Cache Locality

Arrays: Pros and Cons

Pros:
m fixed length data structures
m offer great memory locality
For large data sets stored in an array, two issues arise:
m Dynamic array resizing.
m Search. O(n) without keeping data sorted.

m Insert. Require rearranging large sorted data set.

Data Structures

M

emory, Cache Locality

Large Data Set Storage

HEEHBHEBEEEBEEBEEIBEEE R EE E B ES

Figure: Large Data Set cannot be stored in one contiguous block of
external memory

[1]z2]s|e]7[om 2a]20]s2]an]az]ar [6a]es]|72]sr]ss] 00l

Figure: Sequentially break big array into multiple small ones. Linear
search inefficiently.

Data Structures

B-Tree Index

B-Tree Solution

[1lz2fs|se 7oz 29 [32fao]az]| a7 Jez]es|7z] 81 |ss]100]
\ J 4 W J \ W J 4 . J
|...|5|;.|29|..I.|4?|..;|31|...L
”a' e * "..\‘ ~- —
l_lﬁ\r ;\"\r ~ . Y 4 ‘A \Il\
[]z2]s |7 s]22] [32]a]a2] 6|6 [72]]as]100]

Figure: B-Tree Example

Data Structures

B

-Tree Index

A B-Tree of order k (children) is an k-ary search tree

m The root node is either a leaf or has at least two children.

m Each node, except for the root and the leaves, has between
k/2 and k children. This is to make sure that tree is making
optimal use of space and is not skewed.

m Each path from the root to a leaf has the same length. In
other words, all leaf are at same level.

m The root, each internal node, and each leaf is typically a disk
block.

m Each internal node has up to (k - 1) key values and up to k
pointers to children, as k is the order of tree (order=maximum
children).

m The records are typically stored in leaves. In some cases, they
are also stored in internal nodes.

Data Structures

B

-Tree Index

B+Tree Solution

[1]z2]s] e [7]e]22] 29 [32]ao]az] a7 Jea[es |7z a1 |as] 100
LW J \ J LW J

w ~ -

A Keys don't store pointer to data

|.._|s|‘.._|29|.._|4?|..;|SL|.._|
-

-

-—’-’ - * \‘_‘ "'4-.._4‘-“
- L&) A E
L 3 L h L 3

[N— f—N—
a2 s 7]o |22 [®32]a]a2 62|65 |72 | as]100]
L 4

Leaf nodes are linked to each other and store pointers to data

Figure: B+Tree Example

Data Structures

B

-Tree Index

B+ Trees are different from B Trees

m B+ trees don't store data pointer in interior nodes, they are
ONLY stored in leaf nodes. This is not optional as in B-Tree.
This means that interior nodes can fit more keys on block of
memory and thus fan out better.

m The leaf nodes of B+ trees are linked, so doing a linear scan of
all keys will requires just one pass through all the leaf nodes.
A B tree, on the other hand, would require a traversal of every
level in the tree. This property can be utilized for efficient
search as well, since data is stored only in leafs.

Data Structures
B-Tree Structure
B-Tree Index

B+Tree for Index

d, d, d; d, d; dg d;

Figure: B+Tree Index. (di,da, ..., d7) corresponds to the no of the pages.

	Outline
	B-Tree Structure
	Problem and Solution
	Computer Storage Hierarchy
	Memory, Cache Locality
	B-Tree Index

